
SIAM J. COMPUT.
Vol. 10, No. 2, May 1981

1981 Society for Industrial and Applied Mathematics

0097-5397/81 1002-0003 $01.00/0

SCHEDULING UNIT-TIME TASKS WITH ARBITRARY RELEASE
TIMES AND DEADLINES*

M. R. GAREY-, D. S. JOHNSON,-, B. B. SIMONS$ AND R. E. TARJAN

Abstract. The basic problem considered is that of scheduling n unit-time tasks, with arbitrary release
times and deadlines, so as to minimize the maximum task completion time. Previous work has shown that this
problem can be solved rather easily when all release times are integers. We are concerned with the general
case in which noninteger release times are allowed, a generalization that considerably increases the difficulty
of the problem even for only a single processor. Our results are for the one-processor case, where we provide
an O(n log n) algorithm based on the concept of "forbidden regions".

Key words, scheduling, release time, deadline, computational complexity

1. Introduction. The scheduling problems we will be considering in this paper are
all special cases of the following general scheduling problem. We are given n tasks,
T1, T2,’ , Tn, each requiring one unit of execution time. Each task T/has associated
with it an arbitrary release time ri >- 0 and a deadline di >= ri + 1. In addition, there may
be a partial order < imposed on the tasks. We wish to schedule the given tasks
nonpreemptively on rn identical processors so that

(i) Each task Ti is started no earlier than its release time ri and is completed no
later than its deadline di.

(ii) Whenever Ti < rb r does not start before T/has been completed.
(iii) The maximum completion time (or makespan) is minimized.
Previous results on related problems include the following. If the tasks are allowed

to have unequal lengths, a simple transformation from the 3-PARTITION problem [4]
shows that the problem is NP-complete in the strong sense [4], even for one processor
and integer release times and deadlines. If the partial order is allowed to be arbitrary,
then the problem with unit-time tasks and a variable number of processors is NP-
complete [10], even if all release times are 0 and there is only a single overall task
deadline. On the other hand, good algorithms are known for the following special cases:
If no partial order is imposed and the release times are all integers, then the "earliest
deadline scheduling rule" [5], [7] can be used to solve the problem in O(n log n) time
for any number of processors. Indeed, this method can be used for one processor even
with an arbitrary partial order, since (as we observe in 2) the presence of a partial
order is essentially irrelevant to the one-processor case. For two processors, integer
release times and an arbitrary partial order, an O(n 3 log n) algorithm is given in [3].

As observed in [3], these problems seem to be considerably more difficult when the
release times are not required to be integers (i.e., are not multiples of the common task
length), even when there is only a single processor. In this paper we shall consider the
version in which arbitrary release times are allowed, concentrating on the one-
processor case. The first polynomial time algorithm for this problem was obtained
recently by $imons [8], and it has time complexity O(n 2 log n). An alternative

* Received by the editors July 19, 1979, and in final form May 5, 1980.
Bell Laboratories, Murray Hill, New Jersey 07974.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,

California; now at IBM, San Jose, California. Much of the work of this author was done while she was a
graduate student at University of California, Berkeley, and partially supported by the National Science
Foundation under grant MCS 77-09906.

Computer Science Department, Stanford University, Stanford, California 94305. The work of this
author was supported in part by the National Science Foundation under grant MCS-7826858 and by the U.S.
Office of Naval Research under contract N00014-76-C-0330. Some of this research was done while the
author was visiting Bell Laboratories.

256

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 257

algorithm with the same time complexity has since been obtained by Carlier [2]. Using
the new concept of "forbidden regions", we shall describe an algorithm which, when
suitably modified to use appropriate data structures, runs in time O(n log n) and space
o(n).

The paper is divided into five sections. In 2 we make some simple preliminary
observations, including a "normalization" lemma and a lemma showing that partial
orders are essentially irrelevant when there is only one processor. 3 gives an O(n 2)
algorithm for the one processor problem based on "forbidden regions", and 4
improves the algorithm to O(n log n) through the careful use of appropriate data
structures and several new ideas. Finally, 5 concludes the paper by mentioning several
problems that remain open, particularly with regard to the multi-processor case.

2. Preliminary observations. We shall represent a schedule (or a partial schedule)
by giving a starting time si for each task Ti. Sometimes we will use f s + 1 to denote
the finishing time for T. A schedule is feasible if it satisfies the release times and
deadlines (i.e., r-< s
implies f s.), and executes at most m tasks at a time (i.e., for any time t, there are at
most m tasks Ti for which belongs to the execution interval [s, f)).

A task T is ready at time if r =< t. We shall say that a schedule is normal if, for any
two tasks T and T., si < s. implies that either d =< dj or r. > &. In other words, a normal
schedule has the property that, whenever one or more tasks begin execution at some
time t, those tasks have the earliest deadlines among all remaining tasks that are ready at
t. The following lemma can be proved by straightforward interchange arguments.

LEMMA 1. For any m >= 1, if there are no partial order constraints, then the existence

of a feasible m-processor schedule implies the existence of a schedule that both
minimizes maximum completion time and is normal.

Lemma 1 tells us that in the absence of a partial order we can restrict our attention
to normal schedules. The next lemma will show how, for rn 1, we can restrict ourselves.
to normal schedules even in the presence of a partial order.

Given a partial order < on the tasks, we say the release times and deadlines are
consistent with the partial order if Ti < Tj implies rg + 1 _-< ri and di -< d. 1. We can make
release times and deadlines consistent with the partial order by processing the tasks
once in topological order [6] assigning rimax ({r.}U{r + 1: T < T.}) and once in
reverse topological order assigning di min ({d} U {di 1: Ti < T.}). This requires time
linear in the size of the partial order and does not alter the feasibility of any schedule.
Furthermore, in the one-processor case it allows us subsequently to ignore the partial
order constraints.

LEMMA 2. If the release times and deadlines are consistent with a partial order, then
any normal one-processor schedule that satisfies the release times and deadlines must also
obey the partial order.

Proof. Consider any normal one-processor schedule, and suppose that Ti < T/but
that s. < fi (which, since there is only one processor, implies si < si). By the consistency
assumption we have r < r/ and di < di. However, these, together with s/<f, cause a
violation of the assumption that the schedule is normal, a contradiction from which the
result follows.

Lemma 2 means that a partial order is essentially irrelevant when scheduling on
one processor. Henceforth we shall assume that no partial order is imposed, and we will
consider only normal schedules.

3. One-processor scheduling using forbidden regions. Our one-processor sched-
uling algorithms depend upon discovering "forbidden regions". Aforbidden region is an

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

258 M. R. GAREY, D. S. JOHNSON, B. B. SIMONS AND R. E. TARJAN

interval of time (open both on the left and right) during which no task can start if the
schedule is to be feasible.

The following algorithm forms a basic building block of our main algorithm.
Suppose we are given k unit-time tasks, all of which must be scheduled to finish by some
time d, and a finite collection of forbidden regions F.. Ignoring the individual release
times and deadlines of the tasks, we would like to find the latest time by which the first
such task must start if all of them are to be completed by time d (without starting any of
them in a forbidden region).

We do this using the following naive algorithm: Order the tasks arbitrarily as
T1, T2, , Tk and schedule them from the back of the schedule in order of decreasing
index. When scheduling task Ti, start it at the latest time less than or equal to si+l 1 (or
d 1, if k) which does not fall in a forbidden region. We call this the Backscheduling
Algorithm.

LEMMA 3. The starting times sl foundfor T1 by the BackschedulingAlgorithm is such
that, if all the given tasks were to start at times strictly greater than s 1, with none of them
starting in one of the given forbidden regions, then at least one of them would not be
completed by time d.

Proof. Consider the schedule found by the Backscheduling Algorithm. Let h0 sl,

let h 1, h2, , hi be the starting times of the idle periods (if any) in the schedule and let

hi+l d. See Fig. 1.

FORBIDDEN REGIONS"

F F2 F

SCHEDULE:

ho hi h2 h3

FIG. 1. Scheduling by the Backscheduling Algorithm to avoid forbidden regions.

Notice that whenever (q, t2) is an idle period, it must be the case that (tl 1, t2-1]
is part of some forbidden region, for otherwise the Backscheduling Algorithm would
have scheduled some task to overlap or finish during (tl, t2]. Now consider any interval
(hi, hi+l], 0-<_ <- j. By the preceding observation, no task can possibly be scheduled to
finish after hi but before (or at) the starting time of the first task in the interval.
Furthermore, by definition of the {hi}, the tasks that are finished in the interval are
scheduled with no idle periods separating them and with the rightmost one finishing at
time h+l. It follows that the Backscheduling Algorithm finishes the maximum possible
number of tasks in each interval (hi, hg+l]. Since there is no idle time in the schedule
during [ho, hl], any other schedule that started all the tasks later than time sl and
finished them all by time d would have to exceed this maximum number of tasks in some
interval (hi, hi+l], 1 --< <_--j, a contradiction. U

We shall use the Backscheduling Algorithm as follows. Consider any task ready
time rg and any task deadline dj >= di. Suppose that we have already found a collection of
forbidden regions in the interval [r, di] and that we then apply the Backscheduling
Algorithm, with d di and with the forbidden regions we have already found, to the set
of all tasks Tk satisfying ri <= rk <- dk <= di. Let s be the latest possible start time found by
the Backscheduling Algorithm in this case. There are two possibilities which are of

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 259

interest. First, if s < ri, then we know that there can be no feasible schedule, since all
these tasks must be completed by time d, none of them can be started before ri, but at
least one must be started by time s < ri if all are to be completed by d. Second, if
r -<_ s < r + 1, then we know that (s 1, r) can be declared to be a forbidden region,
since any task started in that region would not belong to our set (its release time is less
than r) and it would force the first task of our set to be started later than s, thus
preventing these tasks from being completed by d.

Our first algorithm for the one-processor problem essentially applies the Back-
scheduling Algorithm to all such pairs of release times and deadlines, in such a manner
as to find forbidden regions from right to left. We do this by processing the release times
in order from largest to smallest. To process a release time ri, we determine for each
deadline dj >-d the number of tasks which cannot start before r and which must be
completed by d.. We then use the Backscheduling Algorithm with d d. to determine
the latest time at which the earliest such task can start. This time is called the critical time

c. for deadline d. (with respect to r). Letting c denote the minimum of all these critical
times with respect to r, we then declare failure if c <ri or declare (c-1, r) to be
a Iorbidden region if r _-< c < r + 1. Notice that by processing release times from largest
to smallest, all forbidden regions to the right of r will have been found by the time that ri
is processed. In order to make the entire process more efficient, we do not completely
recompute the critical time for a deadline when a new release time is processed, but
instead we update the old value.

Once we have found forbidden regions in this way, we schedule the full set of tasks
forward from time 0 using the "earliest deadline scheduling rule". This proceeds by
initially setting to the least nonnegative time not in a forbidden region and then
assigning start time to a task with lowest deadline among those ready at t. At each
subsequent step, we first update to the least time which is greater than or equal to the
finishing time of the last scheduled task, greater than or equal to the earliest ready time
of an unscheduled task, and which does not fall in a forbidden region, and we then assign
start time to a task with lowest deadline among those ready (but not pl"eviously
scheduled) at t. The entire algorithm is specified below.

AIGORIT4M A. Index the tasks (arbitrarily) so that rl <-_ r2 <- <= rn.
Part I. (Forbidden Region Declaration). Initially no forbidden regions have been

declared. For each task T,., in order of decreasing index, perform the following two
steps:

Step 1. For each task T. with d. _>-di, update its critical time c. as follows:
la. If c. is undefined, set c. - d. 1; otherwise set ci - cj 1.
lb. While c. F for some declared forbidden region F, set i inf (F).

Step 2. If 1 or ri-1 < r, set c min {ci:ci is defined} and proceed as follows:
2a. If c < ri, declare failure and halt.
2b. If r _-< c < r + 1, declare (c 1, r) to be a forbidden region.

Part II. (Schedule Generation). Initially no tasks are scheduled and 0. Repeat
the following three steps until all tasks have been scheduled.

Step 1. If no unscheduled task is ready at time t, set min {r T has not yet been
scheduled}.

Step 2. While F for some forbidden region F, set sup (F).
Step 3. Select an unscheduled task T/that has the least deadline among all such

tasks that are ready at t. Set s. and set - + 1.
Fig. 2 illustrates the application of this algorithm to the tasks described by Table 1.
TI-IEOIEM 1. In any easible schedule, no task starts at a time that Algorithm A

declares to be forbidden. IIAlgorithmA declaresfailure, then there is no]’easible schedule.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

260 M. R. GAREY, D. S. JOHNSON, B. B. SIMONS AND R. E. TARJAN

8

10

RELEASE TIMES

FIG. 2a. Table o[critical times.

(- ,o)

0 7 8 9

FIG. 2b. Forbidden regions.

B,! C,!
0 2 5 4 5

!’ !’ F////A ’! ’1
F U W Z X A

6 7 8 9 10 11 12

FIG. 2c. Schedule generated]:or Algorithm A [or tasks in Table I.

TABLE 1.
A set of tasks to schedule. Capital letters represent tasks, with

release time first and deadline second.

A: 0,121/2 B’ 1/2,10 C’-,5 D: 1,6
E: 31/2,7] F: 41/2,6] G: 4,61/2 U: 5,8
W: 81/2, 111/2 X: 832-, 111/2 Z’ 9, 101/2

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 261

Proof. The proof is by a straightforward induction on the number of forbidden
regions, using Lemma 3, and is omitted. !3

THEOREM 2. IfAlgorithm A does not declarefailure, then itfinds a feasible schedule.
Proof. Suppose we have a counterexample to the theorem, and let T. be the first

(earliest scheduled) task that fails to meet its deadline. Without loss of generality, we
may assume that all idle times in [0, s] belong to forbidden regions. (Otherwise, let
t’= sup {t: is an idle time in [0, s.] that does not belong to a forbidden region}, and let r
denote the smallest release time among tasks started at time t’ or later. Then, by the
earliest deadline scheduling rule, r => t’ and there are no nonforbidden idle times in
Jr, s]. Furthermore, all tasks completed before t’ must have release times less than r- 1,
so they played no role in determining the forbidden regions after r. Thus we can obtain a
new counterexample with the desired property by deleting all tasks completed before r
and then subtracting r from the release times and deadlines of all remaining tasks.) We
now consider two cases"

Case 1. Some task scheduled before T/has a deadline later than d.. Let T/be such a
task with maximum starting time, and let r denote the smallest release time among the
tasks that start in (si, s]. By the earliest deadline scheduling rule, we know that r must
exceed s. Index the tasks that start in (s, s], in order of increasing starting times, as T,
T, .., T, (note that T, T.), and consider the result of applying the Backscheduling
Algorithm to these tasks with the given indexing and with d d..

We claim that the Backscheduling Algorithm will assign each of these tasks a
starting time that is strictly less than its starting time in the original schedule. This is
clearly true for T, T, since the Backscheduling Algorithm assigns it a starting time
less than or equal to d.- 1 (depending on whether or not d.- 1 falls in a forbidden
region). Inductively, suppose for some l> 1 that the claim holds for T},.. , T, and
consider how the Backscheduling Algorithm schedules T_t. If in the original schedule
T started immediately at the time T-I finished, the fact that T is started earlier by
the Backscheduling Algorithm trivially implies that TI-1 must also be started earlier.
On the other hand, if in the original schedule T was separated from T’I-1 by a block of
idle time [a, b), the fact that all idle times in the block belong to forbidden regions (by
our choice of counterexample) implies that the Backscheduling Algorithm must have
assigned T’I a starting time strictly before a, and hence before the old finishing time of
T’t-1. Once again it follows that the Backscheduling Algorithm must start T_I earlier
than in the original schedule, and the claim follows by induction.

The import of the claim is that the critical time c. (and hence the minimum critical
time c) found by Algorithm A when processing release time r must have been strictly
less than the starting time assigned to T by Algorithm A. Furthermore, since T
started in that schedule at the first time not in a forbidden region in the interval [fi, sj], it
must be the case that c _-< cj < fi. If c < r, then Algorithm A would have declared failure,
a contradiction. If c >_-r, then we have

Si <r<=c < fi Si "1- 1 <r+ 1,

which implies that Algorithm A would have declared a forbidden region (c-1, r)
containing si, contradicting the fact that Algorithm A never starts a task in a forbidden
region. It follows that Case 1 cannot occur.

Case 2. All tasks scheduled before T. have deadlines less than or equal to d.. Let r
be the smallest release time among the tasks started in [0, si], and let T], T[,.. , T, be
the collection of all such tasks, indexed in order of increasing starting times (again note
that T, T.). As in the previous case, if the Backscheduling Algorithm is applied to
these tasks with the given indexing and with d d., it will assign each such task a starting
time strictly less than its starting time in the original schedule. Since T started in the

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

262 M. R. GAREY, D. S. JOHNSON, B. B. SIMONS AND R. E. TARJAN

original schedule at the earliest time not in a forbidden region, it follows that the
minimum critical time c found by Algorithm A when processing release time r must be
less than 0. Therefore, since r->0, Algorithm A would have declared failure, a
contradiction to Case 2.

Since both Cases 1 and 2 result in contradictions, and since they include all
possibilities, it follows that the assumed counterexample cannot exist, and Theorem 2 is
proved, l-1

THZORZM 3. If Algorithm A finds a schedule, that schedule has minimum make-
span among all feasible schedules.

Proof. Suppose we have a counterexample, and let Ti be the first (earliest
scheduled) task to be completed after the minimum makespan d*. As in the previous
proof, we may assume that all idle times in [0, si] belong to forbidden regions. Let
T, T&,. , T, denote the tasks that start in the interval [0, si], indexed in order of
increasing starting times. The same reasoning as in the previous proof shows that, if the
Backscheduling Algorithm were applied to these tasks with the given indexing and with
d d*, it would assign each of the tasks a starting time that is strictly less than its
original starting time. Indeed, since in the original schedule T started at the earliest
time not in a forbidden region, the Backscheduling Algorithm will assign T a starting
time that is strictly less than 0. But, by Lemma 3, this says that no feasible schedule can
possibly complete this many tasks by time d*, contradicting the fact that d* is the
(achievable) minimum makespan for the assumed counterexample. The theorem
follows.

Thus Algorithm A will find a feasible schedule with minimum makespan whenever
there is a feasible schedule, and otherwise will correctly declare that no feasible
schedule exists..

In implementing Algorithm A, we note that, although the forbidden regions found
in Part I may overlap, each region has left and right endpoints no greater than the
corresponding endpoints for the region declared just previous to it. Thus we can
maintain the forbidden regions in a stack, combining overlapping regions as they occur.
For each deadline dj we maintain a pointer into the stack which indicates the latest
forbidden region that precedes the critical time cj. It is then easy to see that there is an
overall time bound of O(n 2) on each of steps 1 and 2, and hence on Part I. Part II
requires at most O(n log n) additional time, for a total of O(n 2) time. In the next section
we shall see how to reduce this bound of O(n) to O(n log n) by modifying the
algorithm to make more sophisticated use of data structures.

4. Improving the algorithm to O(n log n). Examination of Algorithm A reveals
three places where l)(n 2) time might be used, all of them in Part I. In the process of
updating critical times ci with respect to a new task T/, each of steps l a and lb can
contribute fl(n) time, giving a total of l)(n 2) time. Each computation of c min {c. :ci is
defined} in step 2 can also contribute fl(n) time, again for a total of fl(n 2) time.

The key to obtaining a speed-up from fl(n 2) to O(n log n) involves a basic shift in
the way we deal with critical times. Instead of keeping track of each ci individually, so
that the current value of any cj can be found in constant time (the approach of
Algorithm A), we shall keep track of a smaller amount of information, which will be
sufficient for determining the current value of any c. in time O(log n). This will permit us
to use more efficient procedures for organizing and updating the data structures neded
for computing the ci values.

We first observe that each critical time can be decomposed into two components.
After some task Ti is processed, each critical time c. is smaller than the corresponding

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 263

deadline d. by an amount that depends on both the number of tasks seen so far that have
deadlines d. or less and the locations of previously declared forbidden regions. We can
keep track of these factors through the task load ni and the offset o. The task load n. is
essentially the contribution to ci from step la of Algorithm A; that is, n. is the number of
tasks T with k => for which d -< d.. (Note that a critical time ci is "defined" if and only
if n. > 0.) The offset oi is the contribution to c. of step lb; that is, the total distance ci has
been moved to keep it from being in a forbidden region. Thus we can compute G from
these two components by the formula c. d -(hi + o).

The task loads can be maintained easily within an overall time bound of
O(n log n), primarily because whenever we add 1 to n. we must also add 1 to every n
such that d => di. We store the task loads in a task load tree, which is a binary search tree
1, p. 115] having a vertex corresponding to each deadline di. In addition, we associate a
numerical value with each vertex in such a way that the task load corresponding to any d.
is obtained by summing the values along the path from the root to the vertex for d (e.g.,
see 1, p. 141]). By the choice of an appropriate underlying data structure we can insure
that no such path has length exceeding O(log n), and hence the time for determining the
value of any n. will be O(log n). Similarly, the cost of updating the tree when a new task
is processed (which can involve changes to (n) G values) will be only O(log n), for an
overall updating cost of O(n log n), as claimed.

Maintaining the offsets is somewhat more complicated. In fact, we will not keep
track of the offsets themselves, but rather certain related quantities which we will call
pseudo-offsets. These are defined as follows:

Suppose that F is the set of forbidden regions declared before the start of
processing for task T. For any deadline d. and nonnegative integer n, let hi(n) denote
the earliest starting time that would be assigned if the Backscheduling Algorithm of 3
were applied to n tasks with deadline d. and with the forbidden regions in F. (If n 0,
we let b(n)= d). For each n, let

o(n)=di-bi(n)-n,
(n) Observe that o is well defined andand define the pseudo-offsetoi by o lim._ o
’(n +1) ’(n).finite, since as soon as bi(n)< rg we must have o o

Notice that, unlike the offset oi, the pseudo-offset o does not depend on the
current value of the task load n.. This is the property that will allow us to maintain the
pseudo-offsets efficiently. We postpone for the moment the discussion of how pseudo-
offsets can be used in place of offsets for finding the same forbidden regions. Instead we
first fill in the details of how the pseudo-offsets can be maintained (first-time readers
may wish to skip over these details for now).

Pseudo-offsets are all initially 0 and change only when a new forbidden region
(a, b) is declared. In this case the pseudo-offset for a given deadline d. > b changes if and
only if there exists a nonnegative integer n such that di-o -n (a, b). If this occurs,
the increase in the pseudo-offset is exactly di o. n a. Thus the change depends only
on the fractional offset q (d- o) [mod 1], i.e., the fractional part of d.- o.

To keep track of the pseudo-offsets, we use two data structures: a fractional offset
tree and a pseudo-offset forest. The former is just a binary search tree with a vertex for
each distinct fractional offset value. The latter is a standard union-find data structure
(see 1]) with a vertex for each deadline d. and with deadlines having the same fractional
offset value belonging to the same tree in the forest. Each vertex in the fractional offset
tree will contain a pointer to the root of the union-find tree for that fractional offset
value. Each vertex in the pseudo-offset forest will contain a numerical value such that
the sum of the values along the path from a vertex to the corresponding root is exactly

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

264 M. R. GAREY, D. S. JOHNSON, B. B. SIMONS AND R. E. TARJAN

the pseudo-offset for the deadline represented by that vertex. Initially both data
structures are empty.

When a new forbidden region (a, b) is created, we update these data structures as
follows: First, if there is any deadline d. > a + 1 not represented in the data structures,
we add it with pseudo-offset o 0 and fractional offset value qj d.[mod 1], merging as
necessary. Second, we determine the set Q(a, b) of offsets affected by (a, b) which is
given by

.’qi(a[modl],b[modl])} ifa[modl]<b[modl],
Q(a,b)=

{qi q.(O,b[modl])U(a[modl],l)]- otherwise.

If Q(a, b) is empty, no pseudo-offset is affected by (a, b) and the two data structures can
remain unchanged. If Q(a, b) is nonempty, then all the corresponding entries in the
fractional offset tree are replaced by a single entry with value a[mod 1], and all trees in
the pseudo-offset forest that correspond to the fractional offset value a[mod 1] are
merged together. Finally, the auxiliary values in the pseudo-offset forest are changed to
reflect the corresponding changes in the pseudo-offsets of the members of Q(a, b). The
appropriate amount of this change is q. a [mod 1] if a [mod 1] < q., or 1 + q a [mod 1]
if a [mod 1 > qi.

With appropriate data structures for the fractional offset tree and the pseudo-offset
forest (again, see [1] and also [9]), the overall time bound for maintaining this
information will be O(n log n). Each deadline is added to this structure once at a cost of
O(log n). The construction of each set O(a, b) requires time O((lO(a, b)l + 1). log n),
and this will be O(n log n) overall since the sum over all O(a, b) of IO(a, b)l is bounded
by 2n. (Once two deadlines are merged because they have the same fractional offset
value, they stay merged henceforth.) The time for merging two trees in the pseudo-
offset forest is O(1) per merge and hence O(n) overall. Moreover, this can be done so
that no tree ever has depth exceeding O(log n), so any particular pseudo-offset can be
computed in time O(log n), as required. Finally, the changes in pseudo-offsets caused
by a set O(a, b) can be incorporated in time O(lO(a, b)l) and hence O(n) overall. Thus,
as claimed, the overall time required for maintaining the pseudo-offset data structures is
O(n log n). Specific details of the implementation are left to the reader.

We now wish to argue that we can still identify the same forbidden regions by using
the pseudo-offsets. Recall that the critical time for deadline d. is defined to be
d. o. n.. Define the pseudo-critical time c to be c d. o n., and observe that the
pseudo-critical time for a deadline never exceeds its critical time, though it may be
smaller. In particular, if the pseudo-task load n. min {n" o i.(n) o.} exceeds the task
load n., then c < c. The following lemma shows that we can use pseudo-critical times in
place of critical times in step 2 of Algorithm A and still compute the same forbidden
regions.

LEMMA 4. If, a]ter task Ti is processed, the minimum pseudo-critical time c’=
min {c" n. > 0} satisfies c’ < ri + 1, then the minimum critical time c min {G" n. > 0}
equals c’.

Proo] The proof is by induction on the number of tasks processed. The lemma
clearly holds if no tasks have been processed, since initially there are no forbidden
regions and all critical times and pseudo-critical times equal their corresponding
deadlines by definition. Suppose the lemma holds after processing task Ti+l but not
after processing task Ti (recall that we process tasks in order of decreasing index). Then
after processing task Ti there must be a deadline di such that c < ri + 1 is the minimum
pseudo-critical time, but the minimum critical time c exceeds c. In particular, this
means that the minimum critical time Co after Ti+l is processed must obey co c > c.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 265

(and hence n. > 0) This means thatWe also must have G > ci, and hence n < n

c ;- (o;. +; >_--(o() ++
>-bi(ni)+ 1.

Since n > 0, we must have o(n) > o(n 1) by definition. Therefore bi(n; 1) 1
must be in a forbidden region and bi(n) must be the left endpoint of a forbidden region,
by the operation of the Backscheduling Algorithm. Thus, if is the left endpoint of the
leftmost forbidden region while Ti is being processed, we must have

> bi(n’ci= i)+1>-/+1.

But, by the way forbidden regions are defined in step 2 of Algorithm A, we must have
l_->c0-1. Hence ci--Co, a contradiction. Thus the lemma does indeed hold after
processing Ti, and, by induction holds after processing any task.

As a consequence of Lemma 4, we know that if critical times are replaced by
pseudo-critical times in step 2 of Algorithm A, the same forbidden regions will be
declared. Hence, by replacing steps l a and lb by the computation of task loads and
pseudo-offsets, we will not affect the critical regions and we will reduce two of the

)potential sources of (n computation steps to O(n log n). The remaining potential
difficulty is in the calculation of c’= min {c" n > 0} in step 2. If we had to look at all
the c} each time we calculated c’, this could now conceivably take time l’(rt 2 log n).
Fortunately, we do not need to do this.. The key observation is contained in the
following lemma.

LEMMA 5. If, after task Ti is processed, we have c <- c’ for some deadlines dk <= di,
then at all times in the future we will have c. <= c’.

Proof. The pseudo-critical time for a given deadline changes only when either (a)
the task load changes or (b) a new forbidden region is defined and changes the
pseudo-offset. Since dk <_--dj, each change in the pseudo-critical time for d due to an
increase in task load must be balanced by an identical change for dj. Thus (b) is all that
we need consider. The only way that a pseudo-critical time c , can be altered by a new
forbidden region (a, b) is if there is some integer n such that c’-n (a, b), in
which case the pseudo-offset increases by c ,-n-a and the new pseudo-critical time
becomes c, (c, n a) n + a. However, since c. c , we must have either c. n -<

a, in which case ci n + a, or else ci n (a, b) and hence c. also becomes n + a. In
either case we have that the new values obey c. --n + a c , as claimed.

Thus, as our algorithm proceeds, certain pseudo-critical times become unnecessary
for our computations of c’= min {c." n >0}. To formalize this idea, let us say that a
deadline di is relevant at a point in the updating process if for no d. with d. _-> di is c; < c I.
A deadline is irrelevant if it is not relevant. Initially all deadlines are relevant, though
some may become irrelevant as the computation proceeds. Note that if we sort the
relevant deadlines into nondecreasing order, their pseudo-critical times must also be in
nondecreasing order. If we maintain a pointer into this list to the first deadline with a
"defined" pseudo-critical time (i.e., with n > 0), then at any time we can determine c’ in
time O(log n) by merely computing the pseudo-critical time for the deadline to which
the pointer points, using the data structures for task loads and pseudo-offsets discussed
earlier. The total time for computing values of c’ will thus be O(n log n). Moreover,
since we keep the relevant deadlines sorted by deadline rather than pseudo-critical
time, we need not do any reordering except to delete newly irrelevant deadlines. This
will allow us to maintain data structures for the relevant deadlines in a way that also
obeys an O(n log n) bound.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

266 M. R. GAREY, D. S. JOHNSON, B. B. SIMONS AND R. E. TARJAN

We store the relevant deadlines in a relevant deadline tree, which is a binary search
tree structured to allow deletions in O(log n) time and can itself be initialized in time
O(n log n)--again, see [1]. The pointer to the first relevant deadline with nonzero task
load is initially undefined. In updating we make use of the following lemma, whose
proof is much like that of Lemma 5 and is omitted.

LEMMA 6. A relevant deadline can only become irrelevant as a result of the change
of task loads during the processing of a task T,., and not as the result of a change in
pseudo-offsets during the processing of a forbidden region. I di is the minimum relevant
deadline not less than di when Ti is processed, then the deadlines that become irrelevant are
precisely those relevant deadlines dk < dj whose old pseudo-critical times exceed the new
value of the pseudo-critical time c i.

Thus, after updating the task load tree, we need only identify d. (in time O(log n)),
compute its pseudo-critical time (again in time O(log n)), and then begin comparing this
to the pseudo-critical times for those relevant deadlines dk with dk < dj, in order,
starting with the latest and ending as soon as one is found with c’ <k C.. All those with
c, > c are deleted, at a cost of O(log n) per deletion. Since a deadline can only be
deleted once, the overall cost for comparisons and deletions will then be O(n log n) as
claimed. In addition, during this process the pointer to the first relevant deadline with
nonzero task load can be updated if necessary at an overall cost of O(n). Thus step 2 of
Algorithm A can be replaced by a procedure which accomplishes the same task in a
running time of O(n log n).

This guarantees that the overall algorithm can be made to run in time O(n log n).
We shall call the revised algorithm Algorithm B. It differs from Algorithm A only in
Part I, as Part II already runs in time O(n log n). The revised Part I proceeds as follows:

ALGORITHM B.
Part I. (Forbidden Region Declaration). Initially, there are no forbidden regions,

the relevant deadline tree contains all deadlines, its pointer is undefined, the task
load tree contains all deadlines with their task loads initialized to 0 and the two offset
data structures are empty. For each task T/, in order of decreasing index, we then
perform the following steps:

Step 1.
l a. Modify the task load tree to add 1 to the task load for each deadline

d >-_ di.
lb. Set d’ <- min {d.: d. is relevant and d >-_ di}. While the relevant deadline

d" that immediately precedes d’ in the sorted order of deadlines has a
pseudo-critical time exceeding that for d’, delete d" from the relevant
deadline tree and, if the pointer was undefined or pointed to d", reset
the pointer to point to d’.

Step 2.
If 1 or ri-1 < ri, set c’ min {c" d. is relevant and n. > 0} and proceed as
follows:
2a. If c’< ri, declare failure and halt.
2b. If r; <_- c’ < rg + 1, declare (c’- 1, r) to be a forbidden region and update

the data structures as follows:
Add to the fractional offset tree and the pseudo-offset forest all
deadlines d. >-c’ that are not currently represented, merging if
necessary. Compute Q(c’-1, ri) and replace all corresponding
entries in the fractional offset tree by a single entry with value
c’- 1. Merge all the corresponding sets in the pseudo-offset forest
and update the pseudo-critical times appropriately.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 267

The reader should be able to verify from the preceding discussion that the
algorithm does indeed compute the same forbidden regions as Algorithm A, but now
does it in an overall time bound of O(n log n). Certain additional efficiencies can be
obtained, for instance by using path compression in the pseudo-offset forest (which is
not required for the O(n log n) bound) and by combining the relevant deadline tree and
the task load tree into a single data structure, but these will not yield any improvement
in the basic O(n log n) bound and so we leave such details to those readers interested in
actually implementing the procedure. We also leave to the reader the straightforward
verification of the fact that none of the data structures used by this algorithm (or
Algorithm A) require more than linear space. Fig. 3 illustrates the application
of Algorithm B to the tasks of Table 1, and can be compared to the analogous Fig. 2 for
Algorithm A.

5. Conclusion. In this paper we have studied the problem of scheduling unit-time
tasks with arbitrary release times and deadlines, and we have showed how the idea of
"forbidden regions" could be used to construct an algorithm which solved the problem
of minimizing makespan on one processor in time O(n log n).

Several interesting open problems remain. Carlier [2] has recently shown that the
general m-processor case can be solved in time O(n rn+llOgn). Can the general
problem be solved in time polynomial in both rn and n, perhaps by a suitable
generalization of the concept of forbidden regions (which we were unable to find)?
What happens if we add precedence constraints to the problem? We have already seen
that this does not affect the one-processor algorithm, but what of the case of two
processors, where a polynomial time algorithm is known for the case when all release
times are integers [3]?

RELEASE TIMES

2 2 2 29 8- 8- 5 4-4- 3-- - - -- 0

5-.- 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 2 2 2

6-- 0 0 0 0 2 3 3

2
6-.- 0 0 0 0 2 2 3 4 4 4

2
7- 0 0 0 0 2 3 4 5 5 5

8 0 0 0 2 5 4 5 6 6 6

10 0 0 0 2 3 4 5 6 7 7

10 .- 2 3 4 5 6 7 8 8

11 -- 2 3 4 5 6 7 8 9 10 10

12 2 3 4 5 6 7 8 9 10

FIG. 3a. Table of task loads.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

268 M. R. GAREY, D. S. JOHNSON, B. B. SIMONS AND R. E. TARJAN

FORBIDDEN REGIONS

/-,/1-,-1/,-,+ll,-,,-/l-,,-14,-/- ,-/- -,o

2 2

Fla. 3b. Table 4[factional and pseudo-@ets.

2 2

FIG. 3c. Table o’pseudo-critical times [or relevant deadlines when Algorithm B is applied to tasks in Table 1.

Circled entries are the minimum pseudo-critical times [or deadlines with nonzero task loads. Cross-hatched
regions are]:or irrelevant deadlines.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

UNIT-TIME TASKS 269

Note added in proof. B. Simons has recently resolved one of our open problems by
showing that the general m-processor case (with no procedure constraints) can be
solved in time O(n 3 log n). [A fast algorithm for multiprocessor scheduling, IEEE 21st
Annual Symposium on Foundations of Computer Science, Long Beach, California,
1980, pp. 50-53.]

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[2] J. CARLIER, Problkme it une machine dans le cas oi les taches ont des durdes dgales, Technical Report
(1979) Institut de Programmation, Universit6 Paris VI, Paris.

[3] M. R. GAREY AND D. S. JOHNSON, Two-processor scheduling with start-times and deadlines, this
Journal, 6 (1977), pp. 416-426.

[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, California, 1979.

[5] J. R. JACKSON, Scheduling a production line to minimize maximum tardiness, Research Report 43
(1955), Management Science Research Project, University of California at Los Angeles.

[6] D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,
Reading, Mass., 1968.

[7] T. LANG AND E. B. FERNANDEZ, Scheduling of unit-length independent tasks with execution
constraints, Information Processing Letters, 4 (1976), pp. 95-98.

[8] B. SIMONS, A Cast algorithm for single processor scheduling, IEEE 19th Annual Symposium on
Foundations of Computer Science, Long Beach, California, 1978, pp. 246-252.

[9] R. E. TARJAN, Applications o]’path compression on balanced trees, J. Assoc. Comput. Mach., submitted.
[10] J. D. ULLMAN, NP-complete scheduling problems, J. Comput. System Sci., 10 (1975), pp. 384-393.

D
ow

nl
oa

de
d

12
/2

5/
12

 to
 1

50
.1

35
.1

35
.7

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

